DEDUCTIBILITY AND ANALOGY IN THE STUDY OF TRIANGLES (III) - the g-cevian triangle and the g-circumcevian triangle

Teodor Dumitru Vălcan
„Babeș-Bolyai" University, Cluj-Napoca

Abstract

As in the first paper with the same generic title, in this paper we propose, using logical deductibility relations and the method of analogy, to present some interesting results in Triangle Geometry. Thus, we consider a triangle ABC and the interior bisectors of the angles of the triangle, which intersect at point I and which intersect the sides of the given triangle at points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime}, and the circumscribed circle of triangle ABC at $\mathrm{A}_{1}, \mathrm{~B}_{1}$ and C_{1}. Then, we will call the triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ the $\mathrm{I}-$ cevian triangle attached to the triangle ABC and the point I , and the triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ we will call the I-circumcevian triangle attached to the triangle ABC and the point I. Using usual mathematical knowledge, valid in any triangle, but also the results presented in the first work mentioned above, we can obtain a series of very interesting geometric or trigonometric identities and inequalities, some of them very difficult to prove, synthetically. On the other hand, these new geometric or trigonometric relations introduced in certain derivable or only integrable functions, can involve a series of differential or integral identities or inequalities, particularly interesting. The work is, exclusively, of the Didactics of Mathematics and is addressed, equally, to pupils, students and teachers eager for performance, in this field of Mathematics or, in Mathematics, in general.

Keywords: deductibility, analogy, triangle, cevian, circumcevian, circle, medians, geometric / trigonometric, identity, inequality

Specifications

The present paper is a particularization and continuation of the paper (Vălcan, 2021).

The work is, exclusively, of the Didactics of Mathematics and is addressed, equally, to pupils, students and teachers eager for performance, in this field of Mathematics or, in Mathematics, in general.

The end of a proof or a mathematical propositions which does not prove will be marked with " \square ".

Preliminaries

According to what was stated above, in this paragraph, we will present the main results obtained in (Vălcan, 2021), keeping the numberings and notations there. In this sense, we consider a triangle ABC and the following definitions - see the figure below.
Definition 2.1: A triangle inscribed in triangle $A B C$ is called a triangle $A B^{\prime} C^{\prime}$, the vertices of which are on the sides of triangle $A B C$, i.e. for which $A^{\prime} \in(B C), B^{\prime} \in(C A)$ and $C^{\prime} \in(A B)$.
Definitions 2.2: Let $A B C$ be a triangle and the cevians $A A^{\prime}, B B^{\prime}, C C^{\prime}$ which intersects at point K, with $A^{\prime} \in(B C), B^{\prime} \in(C A)$ and $C^{\prime} \in(A B)$. Also, let A_{1}, B_{1}, C_{1} be the points where these cevians intersect the circle circumscribed to the triangle $A B C$ for the second time. Then:
$>$ the triangle $A B^{\prime} C^{\prime}$ is called the K-cevian triangle attached to the triangle $A B C$ and the point K;
$>$ the triangle $A_{l} B_{I} C_{l}$ is called the K-circumcevian triangle attached to the triangle $A B C$ and the point K.
So, the K-cevian triangle attached to a triangle and the point K , is the triangle formed by the intersections with the sides of the respective triangle, of three cevians, which intersects at point K , and the K -circumcevian triangle attached to a triangle and the point K , is the triangle formed by the intersections (the second time) with the circle circumscribed to the respective triangle, of three cevians, which intersects at point K .

If $\left[\mathrm{AA}^{\prime},\left[\mathrm{BB}^{\prime}\right.\right.$ and $\left[\mathrm{CC}^{\prime}\right.$ are the medians of triangle ABC , with $\mathrm{A}^{\prime} \in(\mathrm{BC})$, $\mathrm{B}^{\prime} \in(\mathrm{CA})$ and $\mathrm{C}^{\prime} \in(\mathrm{AB})$, then these medians intersect at point G , called geometric centroid / center of mass or else center of gravity of triangle ABC and $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is called the G-cevian triangle attached to triangle ABC and point G . If $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$ are the points where these triangle medians intersects the circle circumscribed by the triangle a second time, then $\Delta \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ is called the G-circumcevian triangle attached to the triangle ABC and point G .

We specify the fact that the G-cevian triangle is also called the medial triangle of the triangle ABC . We will denote by $\mathrm{a}, \mathrm{b}, \mathrm{c}$ the lengths of the sides of triangle $A B C$, by $a^{\prime}, b^{\prime}, c^{\prime}$ that the lengths of the sides of triangle $A^{\prime} B^{\prime} C^{\prime}$ and by a_{1}, b_{1}, c_{1} the lengths of the sides of triangle $A_{1} B_{1} C_{1}$. We will also denote by S^{\prime}, p^{\prime} and r^{\prime} - the area, semiperimeter and radius of the circle inscribed in the triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and with S_{1}, p_{1} and r_{1} - the area, semiperimeter and radius of the circle inscribed in the triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$.

We assume that the following equalities hold:

$$
\begin{equation*}
\mathrm{BA}^{\prime}=\alpha \cdot \mathrm{BC}, \quad \mathrm{CB}^{\prime}=\beta \cdot \mathrm{CA} \quad \text { and } \quad \mathrm{AC}^{\prime}=\gamma \cdot \mathrm{AB} . \tag{2.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
A^{\prime} C=(1-\alpha) \cdot B C, \quad B^{\prime} A=(1-\beta) \cdot C A \quad \text { and } \quad C^{\prime} B=(1-\gamma) \cdot A B . \tag{2.2}
\end{equation*}
$$

$$
\begin{align*}
& S^{\prime}=2 \cdot \alpha \cdot \beta \cdot \gamma \cdot S=2 \cdot(1-\alpha) \cdot(1-\beta) \cdot(1-\gamma) \cdot S \tag{2.13}\\
& S^{\prime} \leq \frac{S}{4} \tag{2.17}\\
& a^{2}=\gamma \cdot(1-\beta) \cdot a^{2}+(1-\beta) \cdot(1-\beta-\gamma) \cdot b^{2}+\gamma \cdot(\beta+\gamma-1) \cdot c^{2} \tag{2.20}\\
& b^{2}=\alpha \cdot(\alpha+\gamma-1) \cdot a^{2}+(1-\gamma) \cdot(1-\alpha-\gamma) \cdot c^{2}+\alpha \cdot(1-\gamma) \cdot b^{2} \\
& c^{2}=(1-\alpha) \cdot(1-\alpha-\beta) \cdot a^{2}+\beta \cdot(\alpha+\beta-1) \cdot b^{2}+\beta \cdot(1-\alpha) \cdot c^{2}
\end{align*}
$$

Regarding the S_{1} area, we make it clear that, in general, it cannot be precisely determined / calculated, because this depends on several parameters. For example, if we make the following notations:
$\Varangle \mathrm{ABB}^{\prime}=\Varangle \mathrm{AA}_{1} \mathrm{~B}_{1}{ }^{\text {not }}=\mathrm{x}$,

$$
\Varangle \mathrm{BCC}^{\prime}=\Varangle \mathrm{BB}_{1} \mathrm{C} \stackrel{\text { not. }}{=} \mathrm{y}
$$

and

$$
\begin{equation*}
\Varangle \mathrm{CAA}^{\prime}=\Varangle \mathrm{CC}_{1} \mathrm{~A}_{1}=\mathrm{z}, \tag{2.22}
\end{equation*}
$$

then:

$$
\begin{array}{ll}
\Varangle \mathrm{B}^{\prime} \mathrm{BC}=\Varangle \mathrm{CC}_{1} \mathrm{~B}_{1} \stackrel{\text { not. }}{=} \mathrm{B}-\mathrm{x}, & \Varangle \mathrm{C}^{\prime} \mathrm{CA}=\Varangle \mathrm{C}_{1} \mathrm{~A}_{1} \mathrm{~A}=\mathrm{C}-\mathrm{y} \\
\text { and } & \Varangle \mathrm{A}^{\prime} \mathrm{AB}=\Varangle \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{~B}=\mathrm{A}=\mathrm{A}-\mathrm{z} .
\end{array}
$$

But:

$$
\begin{array}{ll}
\Varangle \mathrm{C}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1}{ }^{\text {not. }}=\mathrm{A}_{1}=\mathrm{C}-\mathrm{y}+\mathrm{x}, & \Varangle \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \stackrel{\text { not. }}{=} \mathrm{B}_{1}=\mathrm{A}-\mathrm{z}+\mathrm{y}, \\
\text { and } & \Varangle \mathrm{B}_{1} \mathrm{C}_{1} \mathrm{~A}_{1}=\mathrm{C}_{1}=\mathrm{Bot}-\mathrm{x}+\mathrm{z} . \tag{2.24}
\end{array}
$$

Then, we obtain that:

$$
\begin{equation*}
a_{1}=2 \cdot R \cdot \sin (C-y+x), \quad b_{1}=2 \cdot R \cdot \sin (A-z+y) \text { and } \quad c_{1}=2 \cdot R \cdot \sin (B-x+z) \tag{2.25'}
\end{equation*}
$$

$$
\mathrm{p}_{1}=\frac{\mathrm{a}_{1}+\mathrm{b}_{1}+\mathrm{c}_{1}}{2}=\mathrm{R} \cdot[\sin (\mathrm{~A}-\mathrm{z}+\mathrm{y})+\sin (\mathrm{B}-\mathrm{x}+\mathrm{z})+\sin (\mathrm{C}-\mathrm{y}+\mathrm{x})]
$$

$$
\begin{equation*}
=4 \cdot \mathrm{R} \cdot \cos \frac{\mathrm{~A}-\mathrm{z}+\mathrm{y}}{2} \cdot \cos \frac{\mathrm{~B}-\mathrm{x}+\mathrm{z}}{2} \cdot \cos \frac{\mathrm{C}-\mathrm{y}+\mathrm{x}}{2} \tag{2.26}
\end{equation*}
$$

$S_{1}=\frac{a_{1} \cdot b_{1} \cdot c_{1}}{4 \cdot R}=2 \cdot R^{2} \cdot \sin (A-z+y) \cdot \sin (B-x+z) \cdot \sin (C-y+x)$;
$r_{1}=\frac{S_{1}}{p_{1}}=4 \cdot R \cdot \sin \frac{A-z+y}{2} \cdot \sin \frac{B-x+z}{2} \cdot \sin \frac{C-y+x}{2}$.
Next, we will calculate the lengths $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}$ and CC^{\prime} :
Proposition 2.8: The following equalities hold:
$A A^{2}=\left(\alpha^{2}-\alpha\right) \cdot a^{2}+\alpha \cdot b^{2}+(1-\alpha) \cdot c^{2}$;
$B B^{2}=(1-\beta) \cdot a^{2}+\left(\beta^{2}-\beta\right) \cdot b^{2}+\beta \cdot c^{2}$;
$C C^{2}=\gamma \cdot a^{2}+(1-\gamma) \cdot b^{2}+\left(\gamma^{2}-\gamma\right) \cdot c^{2}$.

On the other hand, the following equalities hold:
$\mathrm{A}^{\prime} \mathrm{A}_{1}=\frac{\alpha \cdot(1-\alpha) \cdot \mathrm{a}^{2}}{\sqrt{\left(\alpha^{2}-\alpha\right) \cdot \mathrm{a}^{2}+\alpha \cdot \mathrm{b}^{2}+(1-\alpha) \cdot \mathrm{c}^{2}}}$,
$B^{\prime} B_{1}=\frac{\beta \cdot(1-\beta) \cdot b^{2}}{\sqrt{(1-\beta) \cdot a^{2}+\left(\beta^{2}-\beta\right) \cdot b^{2}+\beta \cdot c^{2}}}$,
$\mathrm{C}^{\prime} \mathrm{C}_{1}=\frac{\gamma \cdot(1-\gamma) \cdot \mathrm{c}^{2}}{\sqrt{\gamma \cdot \mathrm{a}^{2}+(1-\gamma) \cdot \mathrm{b}^{2}+\left(\gamma^{2}-\gamma\right) \cdot \mathrm{c}^{2}}}$.
Applying Menelaus' Theorem in the triangle ABA^{\prime} for the transversal $\mathrm{C}^{\prime} \mathrm{KC}$, we obtain:

$$
\begin{equation*}
\frac{\mathrm{KA}^{\prime}}{\mathrm{KA}}=\frac{(1-\alpha) \cdot(1-\gamma)}{\gamma}=\frac{\alpha \cdot \beta}{1-\beta} . \tag{2.36}
\end{equation*}
$$

$\frac{\mathrm{KB}^{\prime}}{\mathrm{KB}}=\frac{(1-\alpha) \cdot(1-\beta)}{\alpha}=\frac{\beta \cdot \gamma}{1-\gamma}$ and $\quad \frac{\mathrm{KC}^{\prime}}{\mathrm{KC}}=\frac{(1-\beta) \cdot(1-\gamma)}{\beta}=\frac{\alpha \cdot \gamma}{1-\alpha}$.
From the equalities (2.36) and (2.36'), it follows that:
$\frac{\mathrm{KA}^{\prime}}{\mathrm{KA}} \cdot \frac{\mathrm{KB}^{\prime}}{\mathrm{KB}} \cdot \frac{\mathrm{KC}^{\prime}}{\mathrm{KC}}=\frac{\alpha \cdot \beta \cdot \gamma}{(1-\alpha) \cdot(1-\beta) \cdot(1-\gamma)} \cdot \alpha \cdot \beta \cdot \gamma=\alpha \cdot \beta \cdot \gamma \leq \frac{1}{8}$.
(2.37)

From the equalities (2.40) and (2.41), by addition, we obtain that:
$S_{\triangle B A_{1} C}=\frac{\alpha \cdot(1-\alpha) \cdot \mathrm{a}^{2}}{\mathrm{AA}^{\prime 2}} \cdot \mathrm{~S}$.
Analogously, obtain that:
$S_{\triangle \mathrm{CB}_{1} \mathrm{~A}}=\frac{\beta \cdot(1-\beta) \cdot \mathrm{b}^{2}}{\mathrm{BB}^{\prime 2}} \cdot \mathrm{~S} \quad$ and $\quad \mathrm{S}_{\triangle \mathrm{AC}_{1} \mathrm{~B}}=\frac{\gamma \cdot(1-\gamma) \cdot \mathrm{c}^{2}}{\mathrm{CC}^{\prime 2}} \cdot \mathrm{~S}$.
From these last three equalities, it follows that:
$\mathrm{S}_{\triangle \mathrm{BA}_{1} \mathrm{C}}+\mathrm{S}_{\triangle \mathrm{CB}_{1} \mathrm{~A}}+\mathrm{S}_{\triangle \mathrm{AC}_{1} \mathrm{~B}} \leq \frac{\mathrm{S}}{4} \cdot\left(\frac{\mathrm{a}^{2}}{\mathrm{AA}^{\prime 2}}+\frac{\mathrm{b}^{2}}{\mathrm{BB}^{\prime 2}}+\frac{\mathrm{c}^{2}}{\mathrm{CC}^{\prime 2}}\right)$.
From here, it follows that:
$\mathrm{A}^{\prime} \mathrm{A}_{1}=\frac{\alpha \cdot(1-\alpha) \cdot \mathrm{a}^{2}}{\mathrm{AA}^{\prime}} \leq \frac{\mathrm{a}^{2}}{4 \cdot \mathrm{AA}^{\prime}}$.
Analogously, obtain that:

$$
\begin{equation*}
\mathrm{B}^{\prime} \mathrm{B}_{1}=\frac{\beta \cdot(1-\beta) \cdot \mathrm{b}^{2}}{\mathrm{BB}^{\prime}} \leq \frac{\mathrm{b}^{2}}{4 \cdot \mathrm{BB}^{\prime}} \quad \text { and } \quad \mathrm{C}^{\prime} \mathrm{C}_{1}=\frac{\lambda \cdot(1-\gamma) \cdot \mathrm{c}^{2}}{\mathrm{CC}^{\prime}} \leq \frac{\mathrm{c}^{2}}{4 \cdot \mathrm{CC}^{\prime}} . \tag{2.45'}
\end{equation*}
$$

At the end of this paragraph, we have the following results:
Proposition 2.9: The following equalities hold:
$A A_{l}=\frac{\alpha \cdot \mathrm{b}^{2}+(1-\alpha) \cdot \mathrm{c}^{2}}{\sqrt{\left(\alpha^{2}-\alpha\right) \cdot \mathrm{a}^{2}+\alpha \cdot \mathrm{b}^{2}+(1-\alpha) \cdot \mathrm{c}^{2}}} ;$
$B B_{I}=\frac{(1-\beta) \cdot \mathrm{a}^{2}+\beta \cdot \mathrm{c}^{2}}{\sqrt{(1-\beta) \cdot \mathrm{a}^{2}+\left(\beta^{2}-\beta\right) \cdot \mathrm{b}^{2}+\beta \cdot \mathrm{c}^{2}}} ;$
$C C_{I}=\frac{\gamma \cdot \mathrm{a}^{2}+(1-\gamma) \cdot \mathrm{b}^{2}}{\sqrt{\gamma \cdot \mathrm{a}^{2}+(1-\gamma) \cdot \mathrm{b}^{2}+\left(\gamma^{2}-\gamma\right) \cdot \mathrm{c}^{2}}}$.

Main results

In this paragraph we will refer to the G-cevian triangle and the G-circumcevian triangle attached to a triangle $A B C$ and the point G - the triangle centroid of this triangle ABC .

Consider the figure below, where $\left[\mathrm{AA}^{\prime},\left[\mathrm{BB}^{\prime}\right.\right.$ and $\left[\mathrm{CC}^{\prime}\right.$ are the medians of triangle $A B C$, with $A^{\prime} \in(B C), B^{\prime} \in(C A)$ and $C^{\prime} \in(A B)$, which intersect at point $G-$ the triangle centroid of triangle $A B C$ and where A_{1}, B_{1}, C_{1} are the points where these medians intersect the circumscribed circle of the triangle for the second time. So, according to the above, $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is the G-cevian triangle attached to triangle ABC and point G, and $\Delta A_{1} B_{1} C_{1}$ is the G-circumcevian triangle attached to triangle $A B C$ and point G - see the figure below.

A_{1}

We remind you that $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is also called the medial triangle associated with triangle ABC .

According to the hypothesis, we obtain that:
$\mathrm{A}^{\prime} \mathrm{B}=\frac{\mathrm{a}}{2}=\mathrm{A}^{\prime} \mathrm{C}$,
$B^{\prime} \mathrm{C}=\frac{\mathrm{b}}{2}=\mathrm{B}^{\prime} \mathrm{A}$,
$\mathrm{C}^{\prime} \mathrm{A}=\frac{\mathrm{c}}{2}=\mathrm{C}^{\prime} \mathrm{B}$.

So, in this case,
$\alpha=\beta=\gamma=\frac{1}{2}$.
Then:

1) From the equalities (2.13) and (3.1), we obtain that:
$S^{\prime}=\frac{1}{4} \cdot S$.
So, the inequality (2.17) becomes equality.
2) From the equalities (2.20), (2.20') and (2.20"), we obtain the lengths of the sides of the G-cevian triangle:
$\mathrm{a}^{\prime}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}=\frac{\mathrm{a}}{2}$,
$\mathrm{b}^{\prime}=\mathrm{A}^{\prime} \mathrm{C}^{\prime}=\frac{\mathrm{b}}{2}$,
$\mathrm{c}^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}=\frac{\mathrm{c}}{2}$.
The equalities (3.3), (3.3') and (3.3") can also be obtained from the characterization theorem of the middle line in the triangle.

From the equalities (3.3), (3.3') and (3.3') it follows that:
$\mathrm{p}^{\prime}=\frac{\mathrm{a}^{\prime}+\mathrm{b}^{\prime}+\mathrm{c}^{\prime}}{2}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{4}=\frac{\mathrm{p}}{2}$;
and, from the equalities (3.2) and (3.4), it follows that:
$\mathrm{r}^{\prime}=\frac{\mathrm{S}^{\prime}}{\mathrm{p}^{\prime}}=\frac{\mathrm{S}}{2 \cdot \mathrm{p}}=\frac{\mathrm{r}}{2}$
(3.5)
and
$R^{\prime}=\frac{a^{\prime} \cdot b^{\prime} \cdot c^{\prime}}{4 \cdot S^{\prime}}=\frac{a \cdot b \cdot c}{8 \cdot S}=\frac{R}{2}$.
3) Equalities (2.22), (2.23) and (2.24) remain valid. Moreover, segments $\left[\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right],\left[\mathrm{B}^{\prime} \mathrm{C}^{\prime}\right]$ and $\left[\mathrm{C}^{\prime} \mathrm{A}^{\prime}\right]$ are midlines in triangle ABC . So, $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \| \mathrm{AB}$,
$\mathrm{B}^{\prime} \mathrm{C}^{\prime} \| \mathrm{BC}$,
$\mathrm{C}^{\prime} \mathrm{A}^{\prime} \|$
AC
and:
$\Varangle \mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{B}=\Varangle \mathrm{ACB}=\mathrm{C}$,
It follows that:
$\Varangle \mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime}=\pi-\mathrm{B}-\mathrm{C}=\mathrm{A}$,
and
so:
$\Varangle \mathrm{A}^{\prime}=\mathrm{A}, \quad \Varangle \mathrm{B}^{\prime}=\mathrm{B} \quad$ and $\quad \Varangle \mathrm{C}^{\prime}=\mathrm{C}$.
On the other hand,
$\Varangle \mathrm{B}_{1} \mathrm{~A}_{1} \mathrm{C}_{1}=\mathrm{A}_{1}=\Varangle \mathrm{BGC}-\mathrm{A}$,
and
But, we know that:
$\mathrm{AA}^{\prime 2} \stackrel{\text { not. }}{=} \mathrm{m}_{\mathrm{a}}^{2}=\frac{2 \cdot\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)-\mathrm{a}^{2}}{4}$,
and

$$
\begin{align*}
& \Varangle \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \stackrel{\text { not. }}{=} \mathrm{B}_{1}=\Varangle \mathrm{AGC}-\mathrm{B}, \\
& \Varangle \mathrm{~A}_{1} \mathrm{C}_{1} \mathrm{~B}_{1} \stackrel{\text { not. }}{=} \mathrm{C}_{1}=\Varangle \mathrm{AGB}-\mathrm{C} .
\end{align*}
$$

$\mathrm{BB}^{\prime 2} \stackrel{\text { not. }}{=} \mathrm{m}_{\mathrm{b}}^{2}=\frac{2 \cdot\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)-\mathrm{b}^{2}}{4}$
$\mathrm{CC}^{\prime 2} \stackrel{\text { not. }}{=} \mathrm{m}_{\mathrm{c}}^{2}=\frac{2 \cdot\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-\mathrm{c}^{2}}{4}$.
Applying the Cosine Theorem to the triangle BGC , we obtain that:
$\mathrm{BC}^{2}=\mathrm{BG}^{2}+\mathrm{CG}^{2}-2 \cdot \mathrm{BG} \cdot \mathrm{GC} \cdot \cos \left({ }^{\star} \mathrm{BGC}\right)$,
namely:

$$
\mathrm{a}^{2}=\frac{4}{9}\left(\mathrm{~m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}\right)-2 \cdot \frac{2}{3} \cdot \mathrm{~m}_{\mathrm{b}} \cdot \frac{2}{3} \cdot \mathrm{~m}_{\mathrm{c}} \cdot \cos (\Varangle \mathrm{BGC}) ;
$$

from which it follows that:

$$
\begin{equation*}
\cos (\Varangle \mathrm{BGC})=\frac{\frac{4}{9} \cdot\left(\mathrm{~m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}\right)-\mathrm{a}^{2}}{\frac{8}{9} \cdot \mathrm{~m}_{\mathrm{b}} \cdot \mathrm{~m}_{\mathrm{c}}} \tag{3.10}
\end{equation*}
$$

From the equalities (3.9) and (3.10), it follows that:
$8 \cdot \mathrm{~m}_{\mathrm{b}} \cdot \mathrm{m}_{\mathrm{c}} \cdot \cos (\Varangle \mathrm{BGC})=\mathrm{b}^{2}+\mathrm{c}^{2}-5 \mathrm{a}^{2}$, namely $: \cos (\Varangle \mathrm{BGC})=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-5 \cdot \mathrm{a}^{2}}{8 \cdot \mathrm{~m}_{\mathrm{b}} \cdot \mathrm{m}_{\mathrm{c}}}$.
Then,

$$
\mathrm{S}=\mathrm{S}_{\triangle \mathrm{ABC}}=3 \cdot \mathrm{~S}_{\triangle \mathrm{BGC}}=3 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \mathrm{~m}_{\mathrm{b}} \cdot \frac{2}{3} \cdot \mathrm{~m}_{\cdot} \cdot \sin (\Varangle \mathrm{BGC}) ;
$$

from which it follows that:

$$
\begin{equation*}
\sin \left({ }^{\Varangle} \mathrm{BGC}\right)=\frac{3 \cdot \mathrm{~S}}{2 \cdot \mathrm{~m}_{\mathrm{b}} \cdot \mathrm{~m}_{\mathrm{c}}} . \tag{3.12}
\end{equation*}
$$

From the equalities (3.11) and (3.12), it follows that:

$$
\begin{equation*}
\operatorname{tg}(\Varangle \mathrm{BGC})=\frac{12 \cdot \mathrm{~S}}{\mathrm{~b}^{2}+\mathrm{c}^{2}-5 \cdot \mathrm{a}^{2}} . \tag{3.13}
\end{equation*}
$$

Analogously, we obtain that:
$\operatorname{tg}(\Varangle \mathrm{AGC})=\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{c}^{2}-5 \cdot \mathrm{~b}^{2}} \quad$ and $\quad \operatorname{tg}(\Varangle \mathrm{AGB})=\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{b}^{2}-5 \cdot \mathrm{c}^{2}}$.
Now, according to the equalities (3.8), (3.13) and (3.13'), it follows that:
$\mathrm{A}_{1}=\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{~b}^{2}+\mathrm{c}^{2}-5 \cdot \mathrm{a}^{2}}\right)-\mathrm{A}$,
$B_{1}=\operatorname{arctg}\left(\frac{12 \cdot S}{a^{2}+c^{2}-5 \cdot b^{2}}\right)-B$,
and

$$
\begin{equation*}
\mathrm{C}_{1}=\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{b}^{2}-5 \cdot \mathrm{c}^{2}}\right)-\mathrm{C} \tag{3.14}
\end{equation*}
$$

Now:
4) The equalities (2.25^{\prime}) become:

$$
a_{1}=2 \cdot R \cdot \sin A_{1}=2 \cdot R \cdot \sin \left[\operatorname{arctg}\left(\frac{12 \cdot S}{b^{2}+c^{2}-5 \cdot a^{2}}\right)-A\right]
$$

analogues:

$$
\begin{align*}
& \mathrm{b}_{1}=2 \cdot \mathrm{R} \cdot \sin \mathrm{~B}_{1}=2 \cdot \mathrm{R} \cdot \sin \left[\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{c}^{2}-5 \cdot \mathrm{~b}^{2}}\right)-\mathrm{B}\right], \\
& \mathrm{c}_{1}=2 \cdot \mathrm{R} \cdot \sin \mathrm{C}_{1}=2 \cdot \mathrm{R} \cdot \sin \left[\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{b}^{2}-5 \cdot \mathrm{c}^{2}}\right)-\mathrm{B}\right] . \tag{3.15}
\end{align*}
$$

5) The equalities (2.26) become:

$$
\begin{align*}
\mathrm{p}_{1} & =\frac{\mathrm{a}_{1}+\mathrm{b}_{1}+\mathrm{c}_{1}}{2}=\frac{2 \cdot \mathrm{R}_{1} \cdot \sin \mathrm{~A}_{1}+2 \cdot \mathrm{R}_{1} \cdot \sin \mathrm{~B}_{1}+2 \cdot \mathrm{R}_{1} \cdot \sin \mathrm{C}_{1}}{2} \\
& =\mathrm{R} \cdot\left(\sin \mathrm{~A}_{1}+\sin \mathrm{B}_{1}+\sin \mathrm{C}_{1}\right)=4 \cdot \mathrm{R} \cdot \cos \frac{\mathrm{~A}_{1}}{2} \cdot \cos \frac{\mathrm{~B}_{1}}{2} \cdot \cos \frac{\mathrm{C}_{1}}{2} \\
& =4 \cdot \mathrm{R} \cdot \cos \frac{\alpha-\mathrm{A}}{2} \cdot \cos \frac{\beta-\mathrm{B}}{2} \cdot \cos \frac{\gamma-\mathrm{C}}{2}, \tag{3.16}
\end{align*}
$$

where:

$$
\begin{array}{ll}
\alpha=\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{~b}^{2}+\mathrm{c}^{2}-5 \cdot a^{2}}\right), & \beta=\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{c}^{2}-5 \cdot b^{2}}\right), \\
\text { and } & \gamma=\operatorname{arctg}\left(\frac{12 \cdot \mathrm{~S}}{\mathrm{a}^{2}+\mathrm{b}^{2}-5 \cdot c^{2}}\right), \tag{3.17}
\end{array}
$$

in which case:
$\mathrm{A}_{1}=\alpha-\mathrm{A}, \quad \mathrm{B}_{1}=\beta-\mathrm{B} \quad$ and $\quad \mathrm{C}_{1}=\gamma-\mathrm{C}$.
6) The equalities (2.27) become
$S_{1}=\frac{a_{1} \cdot b_{1} \cdot c_{1}}{4 \cdot R}=2 \cdot R^{2} \cdot \sin A_{1} \cdot \sin B_{1} \cdot \sin C_{1}=2 \cdot R^{2} \cdot \sin (\alpha-A) \cdot \sin (\beta-B) \cdot \sin (\gamma-C)$.
7) The equalities (2.28) become:
$r_{1}=4 \cdot R_{1} \cdot \sin \frac{A_{1}}{2} \cdot \sin \frac{B_{1}}{2} \cdot \sin \frac{C_{1}}{2}=4 \cdot R \cdot \sin \frac{\alpha-A}{2} \cdot \sin \frac{\beta-B}{2} \cdot \sin \frac{\gamma-C}{2},(3.20)$
or, from the equalities (3.16) and (3.19):
$r_{1}=\frac{S_{1}}{p_{1}}=\frac{2 \cdot R^{2} \cdot \sin A_{1} \cdot \sin B_{1} \cdot \sin C_{1}}{R \cdot \cos \frac{A_{1}}{2} \cdot \cos \frac{B_{1}}{2} \cdot \cos \frac{B_{1}}{2}}=4 \cdot R \cdot \sin \frac{\alpha-A}{2} \cdot \sin \frac{\beta-B}{2} \cdot \sin \frac{\gamma-C}{2}$.
Now the lengths $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}$ şi CC^{\prime} become the lengths of the medians of triangle ABC .
8) From the equalities $(2.29),\left(2.29^{\prime}\right)$ and $\left(2.29^{\prime \prime}\right)$ we obtain the equalities:

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{a}}^{2}=\frac{2 \cdot\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)-\mathrm{a}^{2}}{4}, & \mathrm{~m}_{\mathrm{b}}^{2}=\frac{2 \cdot\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)-\mathrm{b}^{2}}{4}, \\
\text { and } & \mathrm{m}_{\mathrm{c}}^{2}=\frac{2 \cdot\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-\mathrm{c}^{2}}{4}
\end{array}
$$

9) The equalities (2.34), (2.34') and (2.34") become:

$$
\begin{array}{ll}
\mathrm{A}^{\prime} \mathrm{A}_{1}=\frac{\mathrm{a}^{2}}{2 \cdot \sqrt{2 \cdot\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)-\mathrm{a}^{2}}}, & \mathrm{~B}^{\prime} \mathrm{B}_{1}=\frac{\mathrm{b}^{2}}{2 \cdot \sqrt{2 \cdot\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)-\mathrm{b}^{2}}} \\
\text { and } & \mathrm{C}^{\prime} \mathrm{C}_{1}=\frac{\mathrm{c}^{2}}{2 \cdot \sqrt{2 \cdot\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-\mathrm{c}^{2}}} .
\end{array}
$$

10) The equalities (2.36) and (2.36^{\prime}) become:

$$
\begin{equation*}
\frac{\mathrm{GA}^{\prime}}{\mathrm{GA}}=\frac{\mathrm{GB}^{\prime}}{\mathrm{GB}}=\frac{\mathrm{GC}^{\prime}}{\mathrm{GC}}=\frac{1}{2}, \tag{3.23}
\end{equation*}
$$

in which case the inequality from (2.37) becomes equality:

$$
\begin{equation*}
\frac{\mathrm{GA}^{\prime}}{\mathrm{GA}} \cdot \frac{\mathrm{~GB}^{\prime}}{\mathrm{GB}} \cdot \frac{\mathrm{GC}^{\prime}}{\mathrm{GC}}=\frac{1}{8} . \tag{3.24}
\end{equation*}
$$

11) The equalities (2.42) and (2.42^{\prime}) become:

$$
\begin{array}{ll}
S_{\triangle B A_{1} C}=\frac{a^{2}}{2 \cdot\left(b^{2}+c^{2}\right)-a^{2}} \cdot S, & S_{\triangle C B_{1} A}=\frac{b^{2}}{2 \cdot\left(a^{2}+c^{2}\right)-b^{2}} \cdot S \\
\text { and } & S_{\triangle A_{1} B}=\frac{c^{2}}{2 \cdot\left(a^{2}+b^{2}\right)-c^{2}} \cdot S,
\end{array}
$$

in which case the inequality (2.43) becomes an obvious equality.
12) The relationships (2.45) and (2.45') become the equalities from (3.22).
13) The equalities (2.46), (2.46') and (2.46") become:

$$
\mathrm{AA}_{1}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}}{\sqrt{2 \cdot\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)-\mathrm{a}^{2}}} ; \quad \mathrm{BB}_{1}=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}}{\sqrt{2 \cdot\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)-\mathrm{b}^{2}}} ;
$$

and

$$
\begin{equation*}
\mathrm{CC}_{1}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\sqrt{2 \cdot\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-\mathrm{c}^{2}}} \tag{3.26}
\end{equation*}
$$

The following remarks is required here:

1. The equalities (3.3), (3.3') and (3.3") can also be obtained by applying the Cosine Theorem in triangle $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ and taking into account the same theorem in triangle ABC .
2. It can be shown, quite easily, that in any triangle $A B C$ the double inequality holds - see (Andrica, Jecan \& Magdaș, 2019, p. 223):
$\frac{\mathrm{b}+\mathrm{c}}{2} \leq \mathrm{AA}^{\prime} \leq \frac{\mathrm{b}+\mathrm{c}}{2} \cdot \cos \frac{\mathrm{~A}}{2} \quad$ and the analogues:
$\frac{\mathrm{a}+\mathrm{c}}{2} \leq \mathrm{BB}^{\prime} \leq \frac{\mathrm{a}+\mathrm{c}}{2} \cdot \cos \frac{\mathrm{~B}}{2}, \quad \frac{\mathrm{a}+\mathrm{b}}{2} \leq \mathrm{CC}^{\prime} \leq \frac{\mathrm{a}+\mathrm{b}}{2} \cdot \cos \frac{\mathrm{C}}{2}$.
From the equalities (3.27) and according to (Andrica, Jecan \& Magdaș, 2019, p. 319), it follows that, in any triangle ABC , the double inequality holds:
$2 \cdot \mathrm{p} \leq \mathrm{AA}^{\prime}+\mathrm{BB}^{\prime}+\mathrm{CC}^{\prime} \leq 4 \cdot \mathrm{R}+\mathrm{r}$.
3. From equalities (3.22) and according to (Andrica, Jecan \& Magdaș, 2019, p. 320), it follows that:
$\frac{\mathrm{A}^{\prime} \mathrm{A}_{1}}{\mathrm{a}}+\frac{\mathrm{B}^{\prime} \mathrm{B}_{1}}{\mathrm{~b}}+\frac{\mathrm{C}^{\prime} \mathrm{C}_{1}}{\mathrm{c}}>\frac{3}{4}$.
4. Because, according to (Chirciu, 2019, p. 57),
$\mathrm{GA}+\mathrm{GB}+\mathrm{GC} \geq \mathrm{GA}_{1}+\mathrm{GB}_{1}+\mathrm{GC}_{1}$,
it follows that:

$$
\begin{equation*}
\mathrm{AA}^{\prime}+\mathrm{BB}^{\prime}+\mathrm{CC}^{\prime} \geq 3 \cdot\left(\mathrm{~A}^{\prime} \mathrm{A}_{1}+\mathrm{B}^{\prime} \mathrm{B}_{1}+\mathrm{C}^{\prime} \mathrm{C}_{1}\right) \tag{3.30}
\end{equation*}
$$

5. As it follows from the equalities (3.15), the expressions of a_{1}, b_{1} and c_{1} are not very simple. However, it can be shown, not very easily, that (see Chirciu, 2019, p. 151):
$\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}=\frac{4}{3} \cdot\left(\mathrm{AA}^{\prime 2}+\mathrm{BB}^{\prime 2}+\mathrm{CC}^{\prime 2}\right)=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$.
6. Also, the expression of S_{1}, from (3.19), is not very beautiful either. However, we will show that:
$\mathrm{S}_{1} \geq \mathrm{S}$.
First, according to equalities (3.22) and (3.21), we observe that:
$\mathrm{GA}_{1}=\mathrm{GA}^{\prime}+\mathrm{A}^{\prime} \mathrm{A}_{1}=\frac{1}{3} \cdot \mathrm{~m}_{\mathrm{a}}+\frac{\mathrm{a}^{2}}{4 \cdot \mathrm{~m}_{\mathrm{a}}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{6 \cdot \mathrm{~m}_{\mathrm{a}}}=\frac{2}{9} \cdot \frac{\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}}{\mathrm{~m}_{\mathrm{a}}}$.
Analogously we obtain that:
$\mathrm{GB}_{1}=\frac{2}{9} \cdot \frac{\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}}{\mathrm{~m}_{\mathrm{b}}} \quad$ and $\quad \mathrm{GC}_{1}=\frac{2}{9} \cdot \frac{\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}}{\mathrm{~m}_{\mathrm{c}}}$.

We also note that:

$$
\begin{equation*}
\frac{S_{\triangle G A_{1} \mathrm{~B}_{1}}}{\mathrm{~S}_{\triangle \mathrm{GAB}}}=\frac{\mathrm{GA}_{1} \cdot \mathrm{~GB}_{1}}{\mathrm{GA} \cdot \mathrm{~GB}}=\frac{1}{9} \cdot \frac{\left(\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}\right)^{2}}{\mathrm{~m}_{\mathrm{a}}^{2} \cdot \mathrm{~m}_{\mathrm{b}}^{2}} . \tag{3.33}
\end{equation*}
$$

Because,
$\mathrm{S}_{\triangle \mathrm{GAB}}=\frac{1}{3} \cdot \mathrm{~S}$,
from the equality (3.33) and the inequality (3.34), it follows that:

$$
\begin{equation*}
\mathrm{S}_{\triangle G \mathrm{~A}_{1} \mathrm{~B}_{1}}=\frac{1}{27} \cdot \frac{\left(\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}\right)^{2}}{\mathrm{~m}_{\mathrm{a}}^{2} \cdot \mathrm{~m}_{\mathrm{b}}^{2}} \cdot \mathrm{~S} . \tag{3.35}
\end{equation*}
$$

Therefore,

$$
\mathrm{S}_{1}=\mathrm{S}_{\Delta G A_{1} \mathrm{~B}_{1}}+\mathrm{S}_{\Delta \mathrm{GA}_{1} \mathrm{C}_{1}}+\mathrm{S}_{\Delta \mathrm{GB}_{1} \mathrm{C}_{1}}=\frac{1}{27} \cdot \frac{\left(\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}\right)^{3}}{\mathrm{~m}_{\mathrm{a}}^{2} \cdot \mathrm{~m}_{\mathrm{b}}^{2} \cdot \mathrm{~m}_{\mathrm{c}}^{2}} \cdot \mathrm{~S} \geq \mathrm{S},
$$

because, due to the inequality of the means:

$$
\frac{1}{27} \cdot \frac{\left(\mathrm{~m}_{\mathrm{a}}^{2}+\mathrm{m}_{\mathrm{b}}^{2}+\mathrm{m}_{\mathrm{c}}^{2}\right)^{3}}{\mathrm{~m}_{\mathrm{a}}^{2} \cdot \mathrm{~m}_{\mathrm{b}}^{2} \cdot \mathrm{~m}_{\mathrm{c}}^{2}} \geq 1 .
$$

7. Of course, using the above results, other interesting results regarding S^{\prime} can be obtained; for example (see Chirciu, 2019, p. 61):

$$
\begin{equation*}
\text { 9•AG } \cdot \mathrm{GA}_{1}=9 \cdot \mathrm{BG} \cdot \mathrm{~GB}_{1}=9 \cdot \mathrm{CG} \cdot \mathrm{GC}_{1}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2} . \tag{3.36}
\end{equation*}
$$

Hint: We use the equalities (3.22) and the fact that:

$$
\mathrm{AG}=\frac{2}{3} \cdot \mathrm{~m}_{\mathrm{a}} \quad \text { and } \quad \mathrm{GA}^{\prime}=\frac{1}{3} \cdot \mathrm{~m}_{\mathrm{a}}
$$

in which case:

$$
9 \cdot \mathrm{AG} \cdot \mathrm{GA}_{1}=9 \cdot \frac{2}{3} \cdot \mathrm{~m}_{\mathrm{a}} \cdot\left(\mathrm{GA}^{\prime}+\mathrm{A}^{\prime} \mathrm{A}_{1}\right)=2 \cdot \mathrm{~m}_{\mathrm{a}}^{2}+\frac{3}{2} \cdot \mathrm{~m}_{\mathrm{a}}^{2} .
$$

8. Now, summing the equalities from (3.36) and taking into account the fact that:

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}=2 \cdot\left(p^{2}-r^{2}-4 \cdot R \cdot r\right), \tag{3.3.3}
\end{equation*}
$$

from equalities (3.36) and (3.37), we obtain that:

$$
\begin{equation*}
\mathrm{AG} \cdot \mathrm{GA}_{1}+\mathrm{BG} \cdot \mathrm{~GB}_{1}+\mathrm{CG} \cdot \mathrm{GC}_{1}=\frac{2}{3} \cdot\left(\mathrm{p}^{2}-\mathrm{r}^{2}-4 \cdot \mathrm{R} \cdot \mathrm{r}\right) . \tag{3.38}
\end{equation*}
$$

9. We can obtain very interesting inequalities. For example, starting from the fact that in any acute triangle ABC, (see Andrica, Jecan \& Magdaș, 2019, p. 143):

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 \cdot(\mathrm{R}+\mathrm{r})^{2}, \tag{3.39}
\end{equation*}
$$

we obtain the following inequality,

$$
\begin{equation*}
\mathrm{AG} \cdot \mathrm{GA}_{1}+\mathrm{BG} \cdot \mathrm{~GB}_{1}+\mathrm{CG} \cdot \mathrm{GC}_{1} \geq 4 \cdot(\mathrm{R}+\mathrm{r})^{2} \tag{3.40}
\end{equation*}
$$

or, in other words:

$$
\begin{equation*}
\mathrm{p}^{2}-\mathrm{r}^{2}-4 \cdot \mathrm{R} \cdot \mathrm{r} \geq 6 \cdot(\mathrm{R}+\mathrm{r})^{2} \tag{3.41}
\end{equation*}
$$

10. Also from the equality (3.38), we obtain that:

$$
\begin{equation*}
4 \cdot \mathrm{r} \cdot(2 \cdot \mathrm{R}-\mathrm{r}) \leq \mathrm{AG} \cdot \mathrm{GA}_{1}+\mathrm{BG} \cdot \mathrm{~GB}_{1}+\mathrm{CG} \cdot \mathrm{GC}_{1} \leq \frac{4}{3} \cdot\left(2 \cdot \mathrm{R}^{2}+\mathrm{r}^{2}\right) . \tag{3.42}
\end{equation*}
$$

Hint: It is shown that:

$$
\mathrm{p}^{2}-\mathrm{r}^{2}-4 \cdot \mathrm{R} \cdot \mathrm{r} \in\left[6 \cdot \mathrm{r} \cdot(2 \cdot \mathrm{R}-\mathrm{r}), 2 \cdot\left(2 \cdot \mathrm{R}^{2}+\mathrm{r}^{2}\right)\right] .
$$

11. If:
> $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ is the G^{\prime}-cevian triangle of the triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, that is, the median triangle of this triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$;
$>\mathrm{A}^{\prime \prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{C}^{\prime \prime \prime}$ is the $\mathrm{G}^{\prime \prime}$-cevian triangle of the triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$, that is, the median triangle of this triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$;
$>\mathrm{A}^{(\text {iv })} \mathrm{B}^{(\mathrm{iv})} \mathrm{C}^{\text {(iv) }}$ is the $\mathrm{G}^{\prime \prime \prime}$-cevian triangle of the triangle $\mathrm{A}^{\prime \prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{C}^{\prime \prime \prime}$, that is, the median triangle of this triangle $\mathrm{A}^{\prime \prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{C}^{\prime \prime \prime}$;
$>\mathrm{A}^{(n)} \mathrm{B}^{(n)} \mathrm{C}^{(n)}$ is the $\mathrm{G}^{(n-1)}$ cevian triangle of the triangle $\mathrm{A}^{(\mathrm{n}-1)} \mathrm{B}^{(n-1)} \mathrm{C}^{(n-1)}$, that is, the median triangle of this triangle $\mathrm{A}^{(n-1)} \mathrm{B}^{(n-1)} \mathrm{C}^{(n-1)}$,
then the following equalities hold:
$A^{\prime}=A^{\prime \prime}=A^{\prime \prime \prime}=A^{(i v)}=\ldots=A^{(n)}=A$,

$$
\mathrm{B}^{\prime}=\mathrm{B}^{\prime \prime}=\mathrm{B}^{\prime \prime \prime}=\mathrm{B}^{(\mathrm{iv})}=\ldots=\mathrm{B}^{(\mathrm{n})}=\mathrm{B},
$$

and

$$
\begin{equation*}
\mathrm{C}^{\prime}=\mathrm{C}^{\prime \prime}=\mathrm{C}^{\prime \prime \prime}=\mathrm{C}^{(\mathrm{iv})}=\ldots=\mathrm{C}^{(\mathrm{n})}=\mathrm{C} ; \tag{3.43}
\end{equation*}
$$

$$
\begin{array}{cc}
a^{\prime}=\frac{a}{2}, \quad a^{\prime \prime \prime}=\frac{a^{\prime}}{2}=\frac{a}{4}, \quad a^{\prime \prime \prime}=\frac{a^{\prime \prime}}{2}=\frac{a^{\prime}}{4}=\frac{a}{8}, \quad a^{(i v)}=\frac{a^{\prime \prime \prime}}{2}=\frac{a^{\prime \prime}}{4}=\frac{a^{\prime}}{8}=\frac{a}{16}, \\
\ldots & a^{(n)}=\frac{a^{(n-1)}}{2}=\frac{a^{(n-2)}}{2^{2}}=\ldots=\frac{a^{\prime \prime}}{2^{n-2}}=\frac{a^{\prime}}{2^{n-1}}=\frac{a}{2^{n}} ;(3 . \tag{3.44}
\end{array}
$$

$$
\mathrm{b}^{\prime}=\frac{\mathrm{b}}{2}, \mathrm{~b}^{\prime \prime}=\frac{\mathrm{b}^{\prime}}{2}=\frac{\mathrm{b}}{4}, \quad \mathrm{~b}^{\prime \prime \prime}=\frac{\mathrm{b}^{\prime \prime}}{2}=\frac{\mathrm{b}^{\prime}}{4}=\frac{\mathrm{b}}{8}, \quad \mathrm{~b}^{(\mathrm{iv})}=\frac{\mathrm{b}^{\prime \prime \prime}}{2}=\frac{\mathrm{b}^{\prime \prime}}{4}=\frac{\mathrm{b}^{\prime}}{8}=\frac{\mathrm{b}}{16},
$$

$$
\begin{equation*}
\ldots \quad b^{(n)}=\frac{b^{(n-1)}}{2}=\frac{b^{(n-2)}}{2^{2}}=\ldots=\frac{b^{\prime \prime}}{2^{n-2}}=\frac{b^{\prime}}{2^{n-1}}=\frac{b}{2^{n}} ; \tag{3.44'}
\end{equation*}
$$

$$
\mathrm{c}^{\prime}=\frac{\mathrm{c}}{2}, \quad \mathrm{c}^{\prime \prime}=\frac{\mathrm{c}^{\prime}}{2}=\frac{\mathrm{c}}{4}, \quad \mathrm{c}^{\prime \prime \prime}=\frac{\mathrm{c}^{\prime \prime}}{2}=\frac{\mathrm{c}^{\prime}}{4}=\frac{\mathrm{c}}{8}, \quad \mathrm{c}^{(\mathrm{iv})}=\frac{\mathrm{c}^{\prime \prime \prime}}{2}=\frac{\mathrm{c}^{\prime \prime}}{4}=\frac{\mathrm{c}^{\prime}}{8}=\frac{\mathrm{c}}{16},
$$

$$
c^{(n)}=\frac{c^{(n-1)}}{2}=\frac{c^{(n-2)}}{2^{2}}=\ldots=\frac{c^{\prime \prime}}{2^{n-2}}=\frac{c^{\prime}}{2^{n-1}}=\frac{c}{2^{n}} ;\left(3.44^{\prime \prime}\right)
$$

$$
\mathrm{p}^{\prime}=\frac{\mathrm{p}}{2}, \mathrm{p}^{\prime \prime}=\frac{\mathrm{p}^{\prime}}{2}=\frac{\mathrm{p}}{4}, \mathrm{p}^{\prime \prime \prime}=\frac{\mathrm{p}^{\prime \prime}}{2}=\frac{\mathrm{p}^{\prime}}{4}=\frac{\mathrm{p}}{8}, \quad \mathrm{p}^{(\mathrm{iv})}=\frac{\mathrm{p}^{\prime \prime \prime}}{2}=\frac{\mathrm{p}^{\prime \prime}}{4}=\frac{\mathrm{p}^{\prime}}{8}=\frac{\mathrm{p}}{16},
$$

$$
\begin{equation*}
\mathrm{p}^{(\mathrm{n})}=\frac{\mathrm{p}^{(\mathrm{n}-1)}}{2}=\frac{\mathrm{p}^{(\mathrm{n}-2)}}{2^{2}}=\ldots=\frac{\mathrm{p}^{\prime \prime}}{2^{\mathrm{n}-2}}=\frac{\mathrm{p}^{\prime}}{2^{\mathrm{n}-1}}=\frac{\mathrm{p}}{2^{\mathrm{n}}} ; \tag{3.45}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{R}^{\prime}=\frac{\mathrm{R}}{2}, \mathrm{R}^{\prime \prime}=\frac{\mathrm{R}^{\prime}}{2}=\frac{\mathrm{R}}{4}, & \mathrm{R}^{\prime \prime \prime}=\frac{\mathrm{R}^{\prime \prime}}{2}=\frac{\mathrm{R}^{\prime}}{4}=\frac{\mathrm{R}}{8}, \quad \mathrm{R}^{(\mathrm{iv})}=\frac{\mathrm{R}^{\prime \prime \prime}}{2}=\frac{\mathrm{R}^{\prime \prime}}{4}=\frac{\mathrm{R}^{\prime}}{8}=\frac{\mathrm{R}}{16}, \\
\ldots & \mathrm{R}^{(\mathrm{n})}=\frac{\mathrm{R}^{(\mathrm{n}-1)}}{2}=\frac{\mathrm{R}^{(\mathrm{n}-2)}}{2^{2}}=\ldots=\frac{\mathrm{R}^{\prime \prime}}{2^{\mathrm{n}-2}}=\frac{\mathrm{R}^{\prime}}{2^{\mathrm{n}-1}}=\frac{\mathrm{R}}{2^{\mathrm{n}}} ; \\
\mathrm{r}^{\prime}=\frac{\mathrm{r}}{2}, \mathrm{r}^{\prime \prime}=\frac{\mathrm{r}^{\prime}}{2}=\frac{\mathrm{r}}{4}, \quad \mathrm{r}^{\prime \prime \prime}=\frac{\mathrm{r}^{\prime \prime}}{2}=\frac{\mathrm{r}^{\prime}}{4}=\frac{\mathrm{r}}{8}, \quad \mathrm{r}^{(\mathrm{iv)})}=\frac{\mathrm{r}^{\prime \prime \prime}}{2}=\frac{\mathrm{r}^{\prime \prime}}{4}=\frac{\mathrm{r}^{\prime}}{8}=\frac{\mathrm{r}}{16}, \\
\ldots & \mathrm{r}^{(\mathrm{n})}=\frac{\mathrm{r}^{(\mathrm{n}-1)}}{2}=\frac{\mathrm{r}^{(\mathrm{n}-2)}}{2^{2}}=\ldots=\frac{\mathrm{r}^{\prime \prime}}{2^{\mathrm{n}-2}}=\frac{\mathrm{r}^{\prime}}{2^{\mathrm{n}-1}}=\frac{\mathrm{r}}{2^{\mathrm{n}}} ; \tag{3.47}\\
\mathrm{S}^{\prime}=\frac{\mathrm{S}}{4}, \mathrm{~S}^{\prime \prime}=\frac{\mathrm{S}^{\prime}}{4}=\frac{\mathrm{S}}{16}, & \mathrm{~S}^{\prime \prime \prime}=\frac{\mathrm{S}^{\prime \prime}}{4}=\frac{\mathrm{S}^{\prime}}{16}=\frac{\mathrm{S}}{64}, \quad \mathrm{~S}^{(\mathrm{iv)})}=\frac{\mathrm{S}^{\prime \prime \prime}}{4}=\frac{\mathrm{S}^{\prime \prime}}{16}=\frac{S^{\prime}}{64}=\frac{\mathrm{S}}{256}, \\
\ldots & \mathrm{~S}^{(\mathrm{n})}=\frac{\mathrm{S}^{(\mathrm{n}-1)}}{4}=\frac{\mathrm{S}^{(\mathrm{n}-2)}}{4^{2}}=\ldots=\frac{\mathrm{S}^{\prime \prime}}{4^{\mathrm{n}-2}}=\frac{\mathrm{S}^{\prime}}{4^{\mathrm{n}-1}}=\frac{\mathrm{S}}{4^{\mathrm{n}}} .(3.48)
\end{array}
$$

We conclude this paragraph with the following six clarifications:
12. According to the equalities (3.46) and (3.47), Euler's inequality $R \geq 2 \cdot \mathrm{r}$,
we can look at it as occurring, for every $n \in \mathbf{N}^{*}$, in any triangle $A^{(n)} B^{(n)} C^{(n)}$.
13. For every $n \in \mathbf{N}^{*}$, all triangles $A^{(n)} B^{(n)} C^{(n)}$ have the same centroid.
14. For any point M in the plane, the equality holds:
$\overrightarrow{\mathrm{MA}^{\prime}}+\overrightarrow{\mathrm{MB}^{\prime}}+\overrightarrow{\mathrm{MC}^{\prime}}=\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MC}}$.
Hint: The equalities obtained from the Median Theorem are used in vector form:
$\overrightarrow{\mathrm{MA}^{\prime}}=\frac{1}{2} \cdot(\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}) \quad$ and the analogues.
15. The center of the circumscribed circle of triangle $A B C$ coincides with the orthocenter of the triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
16. Triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are homothetic triangles, by homothety $H_{G,-\frac{1}{2}}$, in the sense that:

$$
\begin{equation*}
H_{G,-\frac{1}{2}}(\Delta A B C)=\Delta A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} . \tag{3.52}
\end{equation*}
$$

17. Triangles $A B C$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are orthologic triangles - see (Pătraşcu \& Smarandache, p. 40)

Conclusions and Recommendations

As in the other two papers with the same name (Vălcan, 2021, 2022), we showed that we can study, in the general way, using logical deductibility and the method of analogy, the Cevian and Circumcevian triangles, in this paper we showed how to
transpose the results obtained in the general way, in the case of G-cevian triangles (also called the median triangle), respectively G-circumcevian.

About the principles underlying these two methods and their application in the didactic act, see (Vălcan, 2013). Of course, and in this case, as I have already stated, the reader attentive and interested in these matters, using usual mathematical knowledge, valid in any triangle, such as those presented in (Andrica, Jecan \& Magdaș, 2019), (Chirciu, 2014, 2015, (I) 2021, (II) 2021), (Coța et al 1982) and / or (Țigănilă \& Dumitru, 1979), can obtain a series of other very interesting geometric or trigonometric identities and inequalities, some of them very difficult to prove, synthetically. On the other hand, all these geometric or trigonometric relations introduced in certain derivable or only integrable functions can lead to a series of differential or integral identities or inequalities, particularly interesting, such as those presented in (Stănescu, 2015).

As I stated at the beginning, the work is, exclusively, of the Didactics of Mathematics and is addressed, equally, to pupils, students and teachers eager for performance, in this field of Mathematics or, in Mathematics, in general.

References:

Andrica, D., Jecan, E., \& Magdaș, C. M. (2019). Geometrie - teme şi probleme pentru grupele de excelență (Geometry-topics and issues for excellence groups). Editura Paralela 45
Brânzei, D. \& Zanoschi, A. (1999). Geometrie - probleme cu vectori (Geometry problems with vectors). Editura Paralela 45
Chirciu, M. (2014). Inegalități algebrice - de la inițiere la performanță (Algebraic inequalities - from initiation to performance). Vol. I, Editura Paralela 45.
Chirciu, M. (2015). Inegalități geometrice - de la inițiere la performanță (Geometric inequalities - from initiation to performance). Vol. I, Editura Paralela 45.
Chirciu, M. (2019). Puncte remarcabile intr-un triunghi (Remarkable points in a triangle). Editura Paralela 45
Coța, A. \& colectiv (1982). Matematică, Manual pentru clasa a X - a. Geometrie și trigonometrie (Mathematics, Textbook for the 10th grade. Geometry and Trigonometry). Editura didactică și pedagogică
Stănescu, F. (2015). Inegalități integrale (Integral inequalities). Editura Paralela 45
Pătrașcu, I. \& Smarandache, F. (2020). Geometria triunghiurilor ortologice (Geometry of orthologic triangles). Editura Agora
Țigănilă, Gh. \& Dumitru, M. I. (1979). Culegere de probleme de matematici (Collection of math problems), Editura Scrisul românesc
Vălcan, D. (2013). Didactica Matematicii (Didactics of Mathematics). Editura Matrix Rom.

Vălcan, D. (2021). Deductibility and analogy in the study of some triangles (I) general results-, in „Education, society, family interdisciplinary perspectives and analyses". Editura EIKON, pp. 61-71
Vălcan, D. (2022). Deductibility and analogy in the study of some triangles (II) - the I-cevian triangle and the I-circumcevian triangle -, în „Values, models, education. Contemporary perspectives". Editura EIKON, pp 89-106

